Фульвовая кислота и молекулярная генетика

Фульвовая кислота

Различные клетки человека могут делиться ограниченное количество раз, при этом каждый вид клеток имеет разное, но конечное количество делений, ввиду того, что каждый раз при делении от родительской с помощью теломераза (фермент) отрезается небольшой фрагмент — теломеры. Теломер расположен на концах хромосомы, он как бы запечатывает и стабилизирует цепочку. Поэтому при каждом делении ДНК «укорачивается» на длину теломера, таким образом ДНК, попавшая в обе дочерние клетки становится «укороченной». И родительская ДНК и обе дочерние клетки становятся «дефектными» по сравнению с родительским источником. Теряется информация о части функций родительской клетки. Следующее деление двух получившихся дочерних клеток и образование уже 4-х, также происходит с укорочением теломера ДНК. Данный феномен носит название концевой недорепликации и является одним из важнейших факторов биологического старения. Но теломераза при помощи собственной РНК-матрицы не только обрезает, но также и достраивает теломерные повторы и удлиняет теломеры. В большинстве дифференцированных (обычных) клеток теломераза заблокирована, и ничего не «достраивает», однако активна в стволовых и половых клетках. Одна из основных функций теломеразы заключается в активизации теломер в клетках человеческого эмбриона в период его активного роста, тем самым, предотвращая повреждение или утрату генетической информации при делении клеток.

Теломеразу считают ключом к клеточному бессмертию, «источником юности». Теломераза, обладает настолько необычными свойствами, что за её открытие и исследование её влияния трое учёных (Элизабет Блекбёрн, Кэрол Грейдер и Джек Шостак) получили Нобелевскую премию в 2009 г. Сама теломераза была обнаружена Керол Грейдер ещё в 1984 г. Существование эффекта компенсации укорачивания теломеров было предсказано задолго до этого, Российским биологом Оловниковым Алексеем (в 1973 г.) он назвал эту теорию маргинотомией.

фульвовая кислота днк

Длительное время считалось, что при делении клеток получается точная копия исходной — родительской клетки. Но в результате исследований, проведённых в 1965 г. Леонардом Хейфликом, выяснился следующий «предел» или так называемый «лимит Хейфлика» — ограничение максимального количества делений соматических клеток. Хейфлик наблюдал в микроскоп, как клетки человека, делящиеся в клеточной культуре умирают, после приблизительно 50 делений и проявляют признаки старения при приближении к этой границе. Эта граница была найдена в культурах всех полностью дифференцированных клеток, как человека так и других многоклеточных организмов.

Максимальное число делений различно в зависимости от типа клеток и еще сильнее различается в зависимости от организма. Для большинства человеческих клеток «предел Хейфлика» составляет 52 деления. Когда клетки в культуре приближаются к пределу Хейфлика, старение может быть замедлено деактивацией генов, которые кодируют белки, подавляющие образование опухолей. Это, в частности, белок, называемый p53. Измененные таким образом клетки рано или поздно достигают состояния, называемого «кризисом», когда большая часть клеточной культуры умирает. Однако, иногда клетка не перестает делиться даже при достижении кризиса. Обычно в это время теломеры полностью разрушены и состояние хромосомы ухудшается с каждым делением. Оголенные концы хромосом распознаются как разрывы обеих цепей ДНК. Обычно повреждения такого рода устраняются путем соединения разорванных концов ДНК. Однако, случайно соединенными могут оказаться концы разных хромосом, так как они более не защищены теломерами. Это временно позволяет решить проблему отсутствия теломер, однако во время анафазы клеточного деления сцепленные хромосомы разрываются на части случайным образом, что приводит к большому количеству мутаций и хромосомных аномалий. По мере продолжения этого процесса геном клетки повреждается все больше. Наконец, наступает момент, когда либо объем поврежденного генетического материала становится достаточным для гибели клетки, (путем запрограммированной клеточной смерти (т. н. апоптоза) либо происходит дополнительная мутация, активирующая фермент теломеразу. После активации теломеразы некоторые виды мутировавших клеток становятся бессмертными. Так, многие раковые клетки считаются бессмертными, поскольку активность генов теломеразы в них, позволяет им делиться практически бесконечно.

хромосама и теломеры
Хромосома и теломеры (зеленые) на конце.

Кроме того, теломераза активирует гликолиз, что позволяет раковым клеткам использовать сахара для поддержания заданной скорости роста и деления (эти скорости огромны и сравнимы со скоростями роста клеток в зародыше).

Потенциальным разрешением проблемы концевой недорепликации может служить применение Фульвовой кислоты.

Telegram
VK
WhatsApp
Facebook
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии
Рекомендуемое

Фульвовая кислота и молекулярная генетика

Различные клетки человека могут делиться ограниченное количество раз, при этом каждый вид клеток имеет разное, но конечное количество делений, ввиду того, что каждый раз при делении от родительской…

Окислительно-восстановительный потенциал (ОВП). Чёрный мёд – мощнейший антиоксидант.

Активность электронов, участвующих в окислительно-восстановительных реакциях в жидкой среде, называют окислительно-восстановительным потенциалом (ОВП) среды. Таким образом ОВП имеет любая среда, содержащая жидкость. Так ОВП есть у человеческого организма,…